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Classification of tea quality is now mainly performed according to the sensory results by professional
tea tasters. However, this evaluation method is inconsistent in differentiating their qualities. A
combination of a 1H NMR technique and a multivariate analysis was introduced to the quality evaluation
of green tea by means of a metabolomic technique. A broad range of metabolites were detected by
1H NMR spectrometry. The principal component analysis (PCA) was used to reduce the complexity
of the 1H NMR spectra data set and provided the quality discrimination result. It offered an extensive
clue for classification and quality assessment without any prepurification method. A set of green teas
from a Japanese tea contest were analyzed by 1H NMR to classify the quality with respect to that
judged by tea tasters and to conceive a quality prediction model. Metabolic profiling and fingerprinting
of 1H NMR spectra of green teas with different quality were studied. PCA showed a separation between
the high- and the low-quality green teas. The taste marker compounds contributing to the discrimination
of tea quality were identified. Reliable prediction models were obtained by the partial least-squares
projection to latent structure (PLS) analysis together with a preprocessing filter of both orthogonal
signal correction (OSC) and a combination between OSC and wavelet transform algorithms.
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INTRODUCTION

The fresh infusion of dried young leaves of tea from Camellia
sinensis has become a highly consumed and desirable drink.
Hundreds of teas are generally sorted into three main categories
depending on their fermentation process: green (unfermented),
oolong (partially fermented), and black (fermented). Green and
oolong teas are mostly consumed in Asia and Northern Africa,
while black tea is a worldwide drink (1). The chemical
constituents of tea, which relate straightly to quality, are variable
depending on several factors such as species, environment,
growth, and storage conditions as well as tea leaf quality (1).
In general, the quality of tea is assessed through its appearance,
scent, and flavor. The taste quality is one of the key criteria of
professional tea tasters to evaluate the tea quality. The four
sensory words, bitterness, astringency, sweetness, and umami
(a brothy or savory taste), are the characteristic flavors and are
commonly used by tea tasters to describe the quality of tea
infusion (2–4). Bitterness and astringency are attributed from

alkaloid caffeine and catechins, respectively (5, 6), while umami-
like taste is due to amino acids, especially theanine or
5-N-ethylglutamine (7, 8). However, the chemical compositions
used to determine the tea quality are different between black
and green teas. The quality of green tea is usually described by
the high content of amino acids, caffeine, and some cate-
chins (9–11).

Nowadays, the classification of tea quality is mainly per-
formed according to the sensory result by professional tea tasters.
However, this evaluation method is inconsistent in differentiating
tea quality. Analytical techniques including mass spectrometry
(MS) and nuclear magnetic resonance (NMR) spectrometry offer
a wide range of metabolites resulting in complex data sets. This
information, in combination with metabolomics, has a potential
to provide a reliable and conclusive picture of the composition
of green tea related to its quality. Many attempts have been
done by means of chromatographic and spectroscopic techniques
to determine qualitatively the active compounds involved in the
quality assessment of green tea (1, 8, 10, 12–14). Recently,
chemometric methods including principal component analysis
(PCA) and partial least-squares projection to latent structure
(PLS) analysis based on gas chromatography/mass spectrometry
(GC/MS) have been successfully relevant to quality control of
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the primary metabolites in green tea (15). In this new approach
chemical fingerprinting is used instead of specific marker
compounds to predict the quality of green tea, which gives a
fast and more reliable result compared to that obtained from
sensory test by tea tasters. On the basis of our knowledge, the
consistent chemometric method used to determine the quality/
grade of green tea is limited only to primary metabolites by
GC/MS.

In this study, a combination of nontarget 1H NMR based
metabolomics and a pattern recognition technique will be
established for the quality prediction of Japanese green tea. The
1H NMR metabolic profiling and fingerprinting are expected to
give a wealth of information in a broad range of metabolites
but simplify sample preparation and short analysis time. In
addition, green tea series with known ranking judged by
professional tea tasters from the Kansai tea contest in Japan
were employed to make a quality regression model in order to
evaluate unknown green tea samples.

MATERIALS AND METHODS

Materials. The 53 ranked samples of dried first-crop green tea leaves
or Ichiban cha in Japanese obtained from the commercial tea contest
in the Kansai area of Japan were used in this study and were purchased
by the Tea Branch of the Nara Prefecture Agricultural Experiment
Station. The sensory quality of tea was scored and judged by
professional tea tasters on the basis of its appearance, aroma, and
flavor.

Chemicals and Reagents. All standard compounds used for 1H
NMR assignments were analytical grade with purity higher than 90%.
Deuterium oxide (D2O, D 99.9 atom %) purchased from Cambridge
Isotope Laboratories, Inc., was used as solvent and 3-(trimethylsilyl)-
1-propanesulfonic acid sodium salt (DSS, 97%) from Aldrich was used
as internal standard for all 1H NMR measurements. Phosphate buffer
solution (1.0 M, pH 7.4) used in this experiment was obtained from
Sigma.

Sample Preparation for 1H NMR Analysis. One milliliter of D2O
was added to 50 mg of dried, ground green tea leaves (ground with a
Retsch ball mill at 20 Hz, 1 min) in a 1 mL Eppendorf tube. The mixture
was continuously incubated in Thermomixer comfort (Eppendorf) at
60 °C and 1400 rpm for 30 min, followed by centrifugation at 25 °C
and 16000g for 10 min (Centrifuge 5415 R, Eppendorf). The supernatant
containing hydrophilic metabolites was filtered through a 0.45 µm PTFE
membrane (Advantec). Four hundred microliters of filtrate was then
pipetted and dissolved in 200 µL of 0.2 M buffer solution containing
3 mM DSS to make a total 600 µL solution reserved for NMR
measurement. All samples were prepared one day prior to 1H NMR
analysis.

NMR Spectrometry. 1H NMR spectra were recorded at 25 °C with
a 750 MHz Varian Inova 750 spectrometer using a 5 mm 1H{13C/
15N} triple resonance indirect detection probe. D2O and DSS were used
as the internal lock signal and internal standard at chemical shift (δ)
0.0 ppm, respectively. The 1H NMR measurement was carried out with
64 transients and 128K complex data points. The acquisition time and
recycle delay were 6.257 and 3.743 s per scan, respectively, using a
30° pulse angle. The presaturation pulse sequence was applied to
suppress the residual water signal. All spectra were Fourier transformed
with 0.1 Hz line broadening prior to data reduction and prepro-
cessing.

NMR Data Reduction and Preprocessing. All NMR spectra were
first phased and baseline corrected by Chenomx NMR Suite4.6 software,
professional edition (Chenomx Inc., Canada). Each NMR spectrum was
reduced to a smaller number of variables by integrating regions of an
equal bin size of 0.02 ppm over a range of 1.0–8.0 ppm, while those
of the water signal between 4.6 and 5.0 ppm were eliminated. All bins
were normalized to the area of the DSS methyl peak to provide absolute
contributions of particular resonances to the spectrum prior to the
conversion of Chenomx software to the Microsoft Excel format (*.xls).
The Excel format was then imported to Pirouette software version 3.11

(Infometrix, Inc., Woodinville, WA) to change to the ASCII format
(*.dat) and subjected to in-house software for spectra overlay and
multiple baseline correction prior to multivariate analysis.

1H NMR Assignment and Pattern Recognition. The chemical
shifts of significant chemical constituents were assigned by comparing
their resonances to those of authentic standard compounds including
quinic acid, p-coumaric acid, myo-inositol, 2-O-�-L-arabinopyranosyl-
myo-inositol, chlorogenic acid, L-arginine, (–)-epigallocatechin-3-gallate
(EGCG), (–)-epicatechin-3-gallate (ECG), (–)-epigallocatechin (EGC),
and (–)-epicatechin (EC). The Chenomx 750 MHz (pH 4–9) libraries
provided from Chenomx were also used for peak assignments.

Principal component analysis (PCA), an unsupervised pattern
recognition method, of the 1H NMR spectra was performed by Pirouette
software version 3.11. The significant intrinsic variation could be
differentiated in simplified two- or three-dimensional forms by reducing
the complexity of the data sets Via the mapping method. In this analysis
the mean center was used as a preprocessing method.

Partial least-squares (or projection to latent structure, PLS), orthogo-
nal signal correction (OSC), and OSC wavelet compression (OSCW)
were chosen to create a prediction model. PLS was calculated using
SIMCA-P software version 11.0 (Umetrics AB, Umeå, Sweden), which
can be described as the regression extension of PCA. It derives latent
variables which maximize the covariation between measured data (X)
and the response variable (Y) regressed against instead of describing
the maximum variation in the X matrix used in PCA (16). The mean
center was used as a preprocessing method for all data sets before
analysis.

Orthogonal signal correction (OSC) is normally used to remove the
uncorrelated variables or orthogonal to Y from X using the nonlinear
iterative partial least-squares (NIPALS) algorithm (17, 18). This
approach will cope also with moderate amounts of missing data. The
residual data from this orthogonal model are obscured the variation in
the data set. In this study, the mean center was applied as the
preprocessing method for OSC analysis.

Another approach used in this experiment was a combination
between OSC and wavelet transform named OSCW, which tended to
compress and denoise complicated signals (19). The wavelet transform
uses a mother wavelet as a basis function with a certain scale to
investigate the time scale properties. The detail properties of either sharp
or coarse signals are captured by varying the width of window function.
The wavelet transform technique and wavelet function used in this study
were discrete wavelet transform (DWT) and Daubechies-10, respectively.

RESULTS AND DISCUSSION

Identification of Chemical Constituents in Dried Green
Tea Leaves. To determine the hydrophilic compounds imparted
in the quality of green tea, the aqueous solution was extracted
with D2O at 60 °C for 30 min. The 1H NMR spectrum of water-
soluble compounds extracted from the best quality tea evaluated
by tea taster ranking as no. 1, which was selected as an example
for signal assignment, is shown in Figure 1. The resonances of
metabolites were assigned by comparison to those of the well-
defined standard compounds run in the same condition as green
tea as well as the Chenomx Suite4.6, 750 MHz (pH 4–9), library
database. The corresponding resonances were in good agreement
with standard signals. However, some resonances were slightly
different from those assigned in the Chenomx library database
due to the difference of measurement condition. About 10 major
compounds were identified. Theanine (δ 1.10, 2.12, 2.39, 3.19
ppm), a predominant amino acid in green tea (20), and quinic
acid (δ 1.88, 1.97, 2.05 ppm) were mostly observed in the low-
frequency region at δ 0.5–3.0 ppm (Figure 1A). By excluding
common sugar signals such as sucrose and fructose, the signals
due to caffeine (δ 3.27, 3.43, 3.89 ppm), arginine (δ 3.22, 3.47
ppm), myo-inositol (δ 3.30 ppm), chlorogenic acid (δ 3.89, 4.22
ppm), and quinic acid (δ 3.56 and 4.01 ppm) were clearly
presented in the middle-frequency region at δ 3.0–4.5 ppm
(Figure 1B). Signals presented in the high-frequency region at
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δ 5.0–8.0 ppm were mainly accounted for by 2-O-�-L-
arabinopyranosyl-myo-inositol (δ 5.19 ppm), p-coumaryl quinic
acid and/or cinnamic acid (δ 7.51, 7.75 ppm), EGCG (δ 6.61,
7.02, 7.14 ppm), and ECG (δ 6.91, 7.02 ppm). Signals of EGC
(δ 6.05, 6.08, 6.61 ppm) and EC (δ 6.05, 6.08, 6.91, 7.02 ppm)
were insignificantly observed in this region due to its lower
water solubility.

The quality evaluation of 53 green tea samples has been
judged by professional tea tasters from a green tea contest in
2005. The best quality was defined as no. 1, while the worst
one was assigned as no. 53, ranked in order. In this study, these
53 samples were divided into two groups: high quality (green
tea nos. 1–25) and low quality (green tea nos. 26–53). The
overlaid 1H NMR spectra in different chemical shift regions of
all green tea samples are shown in Figure 2 in which the high-
and low-quality teas are tinted as blue and pink, respectively.

By comparing these 1H NMR spectra, no significant difference
between the high- and the low-quality teas was observed in low-
(Figure 2A) and high- (Figure 2C) frequency regions. In the
middle-frequency region (Figure 2B), on the contrary, 1H NMR
spectra of the high-quality teas differed from the low-quality
ones, most particularly in the caffeine, a major xanthine in green
tea. Caffeine signals at δ 3.27 and 3.43 ppm were rich in the
high-quality tea, but most were absent in the low-quality one.
The relationship between tea quality and chemical components
in green tea has been studied (1, 10, 11, 21–23). Theanine,
catechins, caffeine, and gallic acid are frequently used as taste
markers of tea infusion. The important role of caffeine in the
black tea quality characteristics has been reported (24). It
contributes toward the bitter taste of black tea. In addition, a
complex of caffeine and theaflavin kinds of polyphenols, makes
a distinct brisker taste characteristic which contributes positively

Figure 1. 1H NMR spectra (750 MHz, D2O) of green tea extract from the highest quality sample ranking no. 1 in (A) high-, (B) middle-, and (C)
low-frequency regions, measured at 25 °C.
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to black tea evaluation (25). The similar role was expected to
be able to be valid through green tea infusion as well.

The presence of caffeine signals mainly in the high-quality
green tea was in good agreement to the previous black tea
studies indicated elsewhere. The positive correlation between
caffeine content and taster’s preferences demonstrated clearly
that caffeine was a key constituent used by professional tea
tasters to rank the quality of green tea.

Metabolite Fingerprinting of Green Tea Extracts. Finger-
printing overlooks the problems due to complicated signal
assignments. Instead, multivariate analysis is used to compare
sets of spectra by sorting data sets into categories (26). PCA
was used as the pattern recognition method analyzing individu-
ally in the different chemical shift regions: the low (δ 1.0–2.5
ppm), middle (δ 3.12–4.34 ppm), and high (δ 5.15–6.68 ppm)
frequencies. The results of the PCA score and loading plots of
green tea extracts in the middle and high frequencies are shown
in Figures 3 and 4, respectively; however, data of those in the

low-frequency region were not shown here due to the fact that
no significant discrimination was observed.

The PCA score plots (Figures 3A and 4A) showed clustering
of green tea samples related to the high and low qualities in
the second and third PCs. The corresponding loading plots
(Figures 3B and 4B) showed that the 1H NMR signals from
caffeine, theanine, EGCG, ECG, EGC, and EC, after ignoring
the overlapped sugar peaks, contributed most to the cluster
separation, which was in good agreement to the previous studies.
These compounds have been reported to be rich in the high-
quality tea and corresponded to the major tea taste metabolites
that are usually used to evaluate the quality of tea, except EC
and EGC (1, 10, 11, 21–23). It should be noted that EGC and
EC had less hydrophilicity compared to EGCG and ECG; thus
EGCG and ECG were predominant catechins and played a more
important role in quality assessment when the water-soluble
metabolite was concerned. The significant compounds used to
create a quality prediction model obtained from 1H NMR were
similar to that of GC/TOF-MS (15). It showed that sugars, quinic
acid, caffeine, and theanine were the significant compounds used
to create a quality prediction model (15); however, EGCG, EGC,
ECG, and EC were not detected by GC/TOF-MS, indicating
that the result obtained from 1H NMR gained more qualitative
information compared to that obtained from the GC/MS
technique.

By comparison to the result obtained from individual 1H
NMR analysis, a combination between 1H NMR and multivari-

Figure 2. 1H NMR spectra (750 MHz, D2O) of green tea extract in (A)
high-, (B) middle-, and (C) low-frequency regions, measured at 25 °C.
Each spectrum is colored by the category of tea quality: high-quality (blue)
and low-quality (pink) teas. Green tea nos. 2 and 8 were omitted from
the spectrum overlay due to a baseline problem.

Figure 3. PCA of green tea NMR profiles in the middle-frequency region
between δ 3.12 and 4.34 ppm. PCA shows a separation of clustering
between high-quality (() and low-quality ()) teas. (A) PCA score plot of
the second and third PCs; (B) PCA loading plot responsible for PCA
classification. The number in parentheses describes the fraction of the
variance in the NMR data set explained by each component.
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ate analyses allowed the comprehensive identification of key
metabolites which help to assess the quality determination in
tea infusion.

Quality-Predictive Model. Any regression models are built
mainly to predict the dependent (response) variables Y from
independent (predictor) variables X (27). The regression is made
by creating the mathematical model based on the system
behavior, followed by the determination of optimal values for
model parameters with respect to training samples. Then, values
of unknown independent variables are predicted by using the
resulting training model (27). PLS regression is one of the
chemometric projection methods relating both X and Y variables
Via a linear multivariate model (28) and was applied to the
quality predictive of green tea. In this study, the tea quality
ranking judged by professional tea tasters was used as a
dependent variable. The entire data set was divided into two
parts: a training set which was used to create a model and a
test set that was used to verify the model’s predictive ability
and not included in the regression model. The samples ranked
nos. 5, 15, 25, 35, and 45 were used as a test set for model
validation. The data were centered and scaled to unit variance
before analysis without any transform was applied.

The PLS relationship between measured and predicted values
of green tea samples is presented in Figure 5. The quality of

the PLS regression model can be verified by a correlation
coefficient R2 (goodness to fit) and a cross-validated correlation
coefficient Q2 (goodness of prediction), as well as the valida-
tion errors of estimation and that between measured and
predicted values called root mean squared error of estimation
(rmsEE) and prediction (rmsEP), respectively. Generally, R2,
which describes how well the data of the training set is
mathematically reproduced, varies between 0 and 1, where 1
means a perfectly fitting model. A good prediction model is
achieved when Q2 > 0.5, and if Q2 > 0.9, it is regarded as
excellent predictive ability (29). The PLS regression model of
green tea showed that R2 ) 0.987 and Q2 ) 0.671 with rmsEE
) 1.82 (Figure 5A), indicating excellent fitting and prediction
abilities. The predictability of the model to predict the ranking
order of green tea was tested by subsequently subjecting the
test set into the resulting PLS regression (Figure 5B). The
prediction result was rather scattered from the ideal diagonal
having rmsEP ) 9.22. The large validation error of about 9.22
was expected to be due to uncorrelated X variables interrupting
the prediction of Y variables, hence a distortion of model
predictability.

The quality of PLS regression can be improved by simplifying
the complexity of variations using the OSC approach which
reduces the number of variables from the spectra matrix X by
removing only the ones that are linearly unrelated (orthogonal)
to the response matrix Y to be interpreted (30). By removing
two OSC components from the prior PLS model, the predict-
ability improved by 46% in which Q2 increased from 0.671 to
0.982 as presented in Figure 6A. The remaining sum of squares
of the PLS-OSC regression was 26.77% indicating that 73.23%
of X variables did not correlate to Y and were subtracted. The
predictability of the PLS-OSC regression model was again
verified by a test set described above and is shown in Figure

Figure 4. PCA of green tea NMR profiles in the high-frequency region
between δ 5.15 and 6.68 ppm. PCA shows a separation of clustering
between high-quality (() and low-quality ()) teas. (A) PCA score plot of
the second and third PCs; (B) PCA loading plot responsible for PCA
classification. The number in parentheses describes the fraction of the
variance in the NMR data set explained by each component. Key: EGCG,
(–)-epigallocatechin-3-gallate; EGC, (–)-epigallocatechin; EC, (–)-epicat-
echin; ECG, (–)-epicatechin-3-gallate.

Figure 5. Observed and predicted green tea quality for the PLS model
calculated from the 1H NMR data set of (A) 46 tea samples as the training
set and (B) 51 tea samples included in training and test (circle mark)
sets. Green tea nos. 2 and 8 were omitted from the PLS model due to
a baseline problem.
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6B. The rmsEP value significantly decreased from 9.22 to 5.91,
accounting to 36% after OSC was applied. According to the
regression plot shown in Figure 6, the increase of Q2 and
decrease of rmsEP indicated that the predictive model’s ability
was drastically improved by the removal of unwanted variations
by signal correction. This meant that OSC was an effective
filtering method to remove the anticipated variables and enhance
the regression model accuracy.

Wavelet transform is a viable tool in signal processing used
to compress and denoise complicated signals and extract only
relevant information (18, 31). Details of the wavelet transform
approach can be cited from dedicated references (18, 19, 31).
It has been reported that the combination of OSC for prepro-
cessing and wavelet analysis for compression of spectral data
(OSCW) improved the multivariate calibration quality without
any loss of predictive power (18). Thus, OSCW was then applied
through the PLS regression model of green tea quality predic-
tion: 63.42% of uncorrelated X variables were removed by one-
component OSC filtering; 506 wavelet coefficients were used
to retain 99.50% of the total sum of squares. The resulting PLS-
OSCW regression is displayed in Figure 7A, giving R2 and Q2

of 0.982 and 0.944, respectively. The predictive ability of the
PLS regression model improved when OSCW was implemented
compared to that obtained from OSC by reducing the rmsEP
from 5.91 to 5.53 accounting for 6.43% when the test set was
verified (Figure 7B). The number of wavelet coefficients used
in the PLS model to capture the informative variables was very
high, and only 0.5% of the uncorrelated variables were removed.
This implied that almost all interesting Y variances were captured
by OSC filtering and only small parts of the variation originating
from noise remained. Wavelet analysis enhanced the prepro-

cessing performance by removing those residual variables
without any loss of the predictive ability.

By comparing the R2, Q2, and rmsEP values of PLS, PLS-
OSC, and PLS-OSCW regression, both R2 and Q2 values were
greater than 0.9 for all models, except the Q2 value of the PLS
regression, signifying that all multivariate calibrations could be
used to predict the quality of green tea with a very good fitting
and excellent predictability. However, the best quality predictive
model with highest prediction accuracy was obtained from the
PLS-OSCW regression, in which rmsEP was lowest when
compared to the others.

On the basis of all of the above regression models, it implied
that a combination of OSC filtering and wavelet transform was
the most effective preprocessing method to build the best fit
with the high accuracy PLS regression model for green tea
quality evaluation.

The 1H NMR based metabolomic study provided informative
details on the quality evaluation of Japanese green tea with
simple sample preparation and short analysis time. All metabo-
lites could be identified within a single run, which differed from
the previous studied in which specific key metabolites were
focused on for specific purposes. As mentioned thus far, the
sensory quality of green tea derived from several metabolites,
so metabolomics was expected to be one of the best methodolo-
gies to fulfill either qualitative or quantitative intentions. A
combination of metabolomics and multivariate analysis had an
advantage over the ordinary sensory test, in which chemometric
study offered more reliable results for classification and deter-
mination of the quality of Japanese green tea.

Figure 6. Observed and predicted green tea quality for the PLS model
with the orthogonal signal correction (OSC) preprocessing method,
calculated from the 1H NMR data set of (A) 46 tea samples as the training
set and (B) 51 tea samples included in training and test (circle mark)
sets. Green tea nos. 2 and 8 were omitted from the PLS model due to
a baseline problem.

Figure 7. Observed and predicted green tea quality for the PLS model
with a combination of the orthogonal signal correction preprocessing
method and wavelet analysis (OSCW), calculated from the 1H NMR data
set of (A) 46 tea samples as the training set and (B) 51 tea samples
included in training and test (circle mark) sets. Green tea nos. 2 and 8
were omitted from the PLS model due to a baseline problem.
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